publications

publications in reversed chronological order. generated by jekyll-scholar.

2025

  1. tanneberg2025local.jpg
    Local Pairwise Distance Matching for Backpropagation-Free Reinforcement Learning
    Daniel Tanneberg
    In European Conference on Artificial Intelligence (ECAI), 2025
  2. deigmoeller2025carma.jpg
    CARMA: Context-Aware Situational Grounding of Human-Robot Group Interactions by Combining Vision-Language Models with Object and Action Recognition
    Joerg Deigmoeller, Stephan Hasler, Nakul Agarwal, Daniel Tanneberg, Anna Belardinelli, Reza Ghoddoosian, Chao Wang, Felix Ocker, Fan Zhang, Behzad Dariush, and others
    arXiv preprint arXiv:2506.20373, 2025
  3. krueger2025mirroreyes.jpg
    Mirror Eyes: Explainable Human-Robot Interaction at a Glance
    Matti Krüger, Daniel Tanneberg, Chao Wang, Stephan Hasler, and Michael Gienger
    In IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 2025
  4. keller2025neuro.jpg
    Neuro-Symbolic Imitation Learning: Discovering Symbolic Abstractions for Skill Learning
    Leon Keller, Daniel Tanneberg, and Jan Peters
    In IEEE International Conference on Robotics and Automation (ICRA), 2025

2024

  1. ocker2024tulip.jpg
    Tulip Agent–Enabling LLM-Based Agents to Solve Tasks Using Large Tool Libraries
    Felix Ocker, Daniel Tanneberg, Julian Eggert, and Michael Gienger
    arXiv preprint arXiv:2407.21778, 2024
  2. wang2024lami.jpg
    LaMI: Large language models for multi-modal human-robot interaction
    Chao Wang, Stephan Hasler, Daniel Tanneberg, Felix Ocker, Frank Joublin, Antonello Ceravola, Joerg Deigmoeller, and Michael Gienger
    In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, 2024
  3. hasler2024efficient.jpg
    Efficient Symbolic Planning with Views
    Stephan Hasler, Daniel Tanneberg, and Michael Gienger
    arXiv, 2024
  4. tanneberg2024help.jpg
    To Help or Not to Help: LLM-based Attentive Support for Human-Robot Group Interactions
    Daniel Tanneberg, Felix Ocker, Stephan Hasler, Joerg Deigmoeller, Anna Belardinelli, Chao Wang, Heiko Wersing, Bernhard Sendhoff, and Michael Gienger
    In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2024
  5. joublin2024copal.jpg
    Copal: corrective planning of robot actions with large language models
    Frank Joublin, Antonello Ceravola, Pavel Smirnov, Felix Ocker, Joerg Deigmoeller, Anna Belardinelli, Chao Wang, Stephan Hasler, Daniel Tanneberg, and Michael Gienger
    In IEEE International Conference on Robotics and Automation (ICRA), 2024

2023

  1. tanneberg2023learning.jpg
    Learning type-generalized actions for symbolic planning
    Daniel Tanneberg and Michael Gienger
    In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023
  2. wang2023explainable.jpg
    Explainable human-robot training and cooperation with augmented reality
    Chao Wang, Anna Belardinelli, Stephan Hasler, Theodoros Stouraitis, Daniel Tanneberg, and Michael Gienger
    In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, 2023

2022

  1. belardinelli2022intention.jpg
    Intention estimation from gaze and motion features for human-robot shared-control object manipulation
    Anna Belardinelli, Anirudh Reddy Kondapally, Dirk Ruiken, Daniel Tanneberg, and Tomoki Watabe
    In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022

2021

  1. tanneberg2021skid.jpg
    SKID RAW: Skill Discovery from Raw Trajectories
    Daniel Tanneberg, Kai Ploeger, Elmar Rueckert, and Jan Peters
    IEEE Robotics and Automation Letters, 2021

2020

  1. tanneberg2020evolutionary.jpg
    Evolutionary training and abstraction yields algorithmic generalization of neural computers
    Daniel Tanneberg, Elmar Rueckert, and Jan Peters
    Nature Machine Intelligence, 2020
  2. keller2020model.jpg
    Model-Based Quality-Diversity Search for Efficient Robot Learning
    Leon Keller, Daniel Tanneberg, Svenja Stark, and Jan Peters
    In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020

2019

  1. tanneberg2019learning.jpg
    Learning Algorithmic Solutions to Symbolic Planning Tasks with a Neural Computer Architecture
    Daniel Tanneberg, Elmar Rueckert, and Jan Peters
    arXiv preprint arXiv:1911.00926, 2019
  2. tanneberg2019intrinsic.jpg
    Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks
    Daniel Tanneberg, Jan Peters, and Elmar Rueckert
    Neural Networks, 2019

2017

  1. tanneberg2017online.jpg
    Online learning with stochastic recurrent neural networks using intrinsic motivation signals
    Daniel Tanneberg, Jan Peters, and Elmar Rueckert
    In Conference on Robot Learning, 2017
  2. tanneberg2017efficient.jpg
    Efficient Online Adaptation with Stochastic Recurrent Neural Networks
    Daniel Tanneberg, Jan Peters, and Elmar Rueckert
    In IEEE-RAS International Conference on Humanoid Robotics (Humanoids), 2017
  3. van2017generalized.jpg
    Generalized exploration in policy search
    Herke Hoof, Daniel Tanneberg, and Jan Peters
    Machine Learning, 2017

2016

  1. tanneberg2016deep.jpg
    Deep spiking networks for model-based planning in humanoids
    Daniel Tanneberg, Alexandres Paraschos, Jan Peters, and Elmar Rueckert
    In IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2016
  2. rueckert2016recurrent.jpg
    Recurrent spiking networks solve planning tasks
    Elmar Rueckert, David Kappel, Daniel Tanneberg, Dejan Pecevski, and Jan Peters
    Scientific reports, 2016